Notice
Recent Posts
Recent Comments
Link
일 | 월 | 화 | 수 | 목 | 금 | 토 |
---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | ||
6 | 7 | 8 | 9 | 10 | 11 | 12 |
13 | 14 | 15 | 16 | 17 | 18 | 19 |
20 | 21 | 22 | 23 | 24 | 25 | 26 |
27 | 28 | 29 | 30 | 31 |
Tags
- 우리말
- 노드 전압법
- 논증하는 법
- 정견
- 항공우주공학
- 10·29 참사
- 진실 앞에서
- 전기전자공학
- 우주공학
- 난생 처음 취득하는 유명한 자격증
- 링크로스아카데미
- 근궤적
- 아주 옛날에는 사람이 안 살았다는데
- 윤하 - 혜성
- 군인시
- This shall be too brought to you by
- 가슴 아파요
- 편서풍
- 억울할 수. 있다.
- 키르히호프
- 허무한 삶
- 백로야 가지마라
- 이태원 참사
- 이태원 압사 사고
- 논리와 오류
- 날고싶다
- 실내환경
- 항공공학
- 날씨 좋은 추운 겨울
- 잃어버린 땅 되찾기
Archives
- Today
- Total
www.ndirection.kr
[Automatic Control] Plot a Root-locus Approximately 본문
2017. 6. 23. 22:51 글(https://publisher2016.tistory.com/62)을 이동
[자동제어] 근궤적 근사적으로 그리는 법
Given a G(s)H(s) : Loop Transfer Function.
Then, you can derive the information of a characteristic equation from a given loop transfer function.
Follow next steps for plotting a Root-Locus.
Characteristics.
1. Number of branches = the order of the polynomial(the number of closed-loop poles)
2. Root Loci is symmetrical about the real axis.
- Recognize points of start and end
If a loop transfer function is given by KG(s)H(s) where K is a constant, then the characteristic equation is 1 + KG(s)H(s) = 0.
This form can be changed like G(s)H(s) = -1/K.
At first, when K = 0, that is G(s)H(s) -> inf. as K->0, s is the pole of G(s)H(s).
Next, when K = inf, that is G(s)H(s) -> 0 as K->inf, s is the zero of G(s)H(s).
Plot poles and zeros on a Re-Im plane. - Interval of the existence of roots on the real axis.
At here G(s)H(s) = -1/K, if 0<K<inf, then G(s)H(s) < 0. You just solve and find the interval of this inequality G(s)H(s) < 0. However, there is a more simple way. If odd number of poles or zeros are on the right side of some interval, then that interval is a root locus. But even, it isn't. You can find the reason of this from an angle condition. - Asymptotes(Behavior at infinity)
θ = (2*l + 1)π / |n - m| where l = 1, 2, 3, ..., |n-m| -1, n≠m, n is the number of finite poles and m is the number of finite zeros.
Intersection of the asymptotes : σ = (Σ Poles of G(s)H(s) - Σ Zeros of G(s)H(s) ) / (n - m) - Breakaway point
From -K = 1 / (G(s)H(s)), solve this equation, -dK/ds = d( 1 / (G(s)H(s)) )/ds - Angles of departure and arrival
From G(s)H(s) = -1/k, ∠(G(s)H(s)) = ∠(-1/K)
=> ∠(G(s)H(s)) = (2*l + 1)π ( or you just write π).
Next, expand and arrange the equation in the LHS(Left Hand Side).
And a term that you want to know an angle of departure or arrival is set by θ.
A variable s in the each term in the LHS is set by bar of s which is so close to original truly s. - Intersection of the root locus with the imaginary axis
Use the Rout-Hurwitz Test.
간단히 말해서
- K -> 0, K -> ∞ 출발점과 도착점
- 실수축에 존재하는 근의 범위
- s가 무한대일때 출발점과 도착점(점근선 각과 실수축 교차점)
- 분기점
- 출발각, 도착각
- 허수축 교차점
'항공우주 Aerospace' 카테고리의 다른 글
노드 전압법, 망 전류법 적용하는 법 (0) | 2022.08.15 |
---|---|
공학이란 무엇인가 = What is engineering? 조금 읽고 써놓은 것 (0) | 2022.08.05 |
Comments